当 Redis 发生高延迟时,到底发生了什么?| 原力计划
nanshan 2024-10-20 07:35 10 浏览 0 评论
作者 | 程序员历小冰
责编 | 胡巍巍
Redis 是一种内存数据库,将数据保存在内存中,读写效率要比传统的将数据保存在磁盘上的数据库要快很多。但是 Redis 也会发生延迟时,这是就需要我们对其产生原因有深刻的了解,以便于快速排查问题,解决 Redis 的延迟问题。
一条命令执行过程
在本文场景下,延迟(Latency)是指从客户端发送命令到客户端接收到命令返回值的时间间隔。所以我们先来看一下 Redis 一条命令执行的步骤,其中每个步骤出问题都可能导致高延迟。
上图是 Redis 客户端发送一条命令的执行过程示意图,绿色的是执行步骤,而蓝色的则是可能出现的导致高延迟的原因。
网络连接限制、网络传输速率和CPU性能等是所有服务端都可能产生的性能问题。但是 Redis 有自己独有的可能导致高延迟的问题:命令或者数据结构误用、持久化阻塞和内存交换。
而且更为致命的是,Redis 采用单线程和事件驱动的机制来处理网络请求,分别有对应的连接应答处理器,命令请求处理器和命令回复处理器来处理客户端的网络请求事件,处理完一个事件就继续处理队列中的下一个。一条命令处理出现了高延迟会影响接下来处于排队状态的其他命令。
对于高延迟,Redis 原生提供慢查询统计功能,执行 slowlog get {n} 命令可以获取最近的 n 条慢查询命令,默认对于执行超过10毫秒(可配置)的命令都会记录到一个定长队列中,线上实例建议设置为1毫秒便于及时发现毫秒级以上的命令。
# 超过 slowlog-log-slower-than 阈值的命令都会被记录到慢查询队列中
# 队列最大长度为 slowlog-max-len
slowlog-log-slower-than 10000
slowlog-max-len 128
如果命令执行时间在毫秒级,则实例实际OPS只有1000左右。慢查询队列长度默认128,可适当调大。慢查询本身只记录了命令执行时间,不包括数据网络传输时间和命令排队时间,因此客户端发生阻塞异常 后,可能不是当前命令缓慢,而是在等待其他命令执行。需要重点比对异常和慢查询发生的时间点,确认是否有慢查询造成的命令阻塞排队。
slowlog的输出格式如下所示。第一个字段表示该条记录在所有慢日志中的序号,最新的记录被展示在最前面;第二个字段是这条记录被记录时的系统时间,可以用 date 命令来将其转换为友好的格式第三个字段表示这条命令的响应时间,单位为 us (微秒);第四个字段为对应的 Redis 操作。
下面我们就来依次看一下不合理地使用命令或者数据结构、持久化阻塞和内存交换所导致的高延迟问题。
> slowlog get
1) 1) (integer) 26
2) (integer) 1450253133
3) (integer) 43097
4) 1) "flushdb"
不合理的命令或者数据结构
一般来说 Redis 执行命令速度都非常快,但是当数据量达到一定级别时,某些命令的执行就会花费大量时间,比如对一个包含上万个元素的 hash 结构执行 hgetall 操作,由于数据量比较大且命令算法复杂度是 O(n),这条命令执行速度必然很慢。
这个问题就是典型的不合理使用命令和数据结构。对于高并发的场景我们应该尽量避免在大对象上执行算法复杂度超过 O(n) 的命令。对于键值较多的 hash 结构可以使用 scan 系列命令来逐步遍历,而不是直接使用 hgetall 来全部获取。
Redis 本身提供发现大对象的工具,对应命令:redis-cli-h {ip} -p {port} bigkeys。这条命令会使用 scan 从指定的 Redis DB 中持续采样,实时输出当时得到的 value 占用空间最大的 key 值,并在最后给出各种数据结构的 biggest key 的总结报告。
> redis-cli -h host -p 12345 --bigkeys
# Scanning the entire keyspace to find biggest keys as well as
# average sizes per key type. You can use -i 0.1 to sleep 0.1 sec
# per 100 SCAN commands (not usually needed).
[00.00%] Biggest hash found so far 'idx:user' with 1 fields
[00.00%] Biggest hash found so far 'idx:product' with 3 fields
[00.00%] Biggest hash found so far 'idx:order' with 14 fields
[02.29%] Biggest hash found so far 'idx:fund' with 16 fields
[02.29%] Biggest hash found so far 'idx:pay' with 69 fields
[04.45%] Biggest set found so far 'indexed_word_set' with 1482 members
[05.93%] Biggest hash found so far 'idx:address' with 159 fields
[11.79%] Biggest hash found so far 'idx:reply' with 196 fields
-------- summary -------
Sampled 1484 keys in the keyspace!
Total key length in bytes is 13488 (avg len 9.09)
Biggest set found 'indexed_word_set' has 1482 members
Biggest hash found 'idx:的' has 196 fields
0 strings with 0 bytes (00.00% of keys, avg size 0.00)
0 lists with 0 items (00.00% of keys, avg size 0.00)
2 sets with 1710 members (00.13% of keys, avg size 855.00)
1482 hashs with 6731 fields (99.87% of keys, avg size 4.54)
0 zsets with 0 members (00.00% of keys, avg size 0.00)
持久化阻塞
对于开启了持久化功能的Redis节点,需要排查是否是持久化导致的阻 塞。持久化引起主线程阻塞的操作主要有:fork 阻塞、AOF刷盘阻塞。
fork 操作发生在 RDB 和 AOF 重写时,Redis 主线程调用 fork 操作产生共享内存的子进程,由子进程完成对应的持久化工作。如果 fork 操作本身耗时过长,必然会导致主线程的阻塞。
Redis 执行 fork 操作产生的子进程内存占用量表现为与父进程相同,理论上需要一倍的物理内存来完成相应的操作。但是 Linux 具有写时复制技术 (copy-on-write),父子进程会共享相同的物理内存页,当父进程处理写请求时会对需要修改的页复制出一份副本完成写操作,而子进程依然读取 fork 时整个父进程的内存快照。所以,一般来说,fork 不会消耗过多时间。
可以执行info stats命令获取到 latest_fork_usec 指标,表示 Redis 最近一次 fork 操作耗时,如果耗时很大,比如超过1秒,则需要做出优化调整。
> redis-cli -c -p 7000 info | grep -w latest_fork_usec
latest_fork_usec:315
当我们开启AOF持久化功能时,文件刷盘的方式一般采用每秒一次,后 台线程每秒对AOF文件做 fsync 操作。当硬盘压力过大时,fsync 操作需要等待,直到写入完成。如果主线程发现距离上一次的 fsync 成功超过2秒,为了数据安全性它会阻塞直到后台线程执行 fsync 操作完成。这种阻塞行为主要是硬盘压力引起,可以查看 Redis日志识别出这种情况,当发生这种阻塞行为时,会打印如下日志:
Asynchronous AOF fsync is taking too long (disk is busy). \
Writing the AOF buffer without waiting for fsync to complete, \
this may slow down Redis.
也可以查看 info persistence 统计中的 aof_delayed_fsync 指标,每次发生 fdatasync 阻塞主线程时会累加。
>info persistence
loading:0
aof_pending_bio_fsync:0
aof_delayed_fsync:0
内存交换
内存交换(swap)对于 Redis 来说是非常致命的,Redis 保证高性能的一个重要前提是所有的数据在内存中。如果操作系统把 Redis 使用的部分内存换出到硬盘,由于内存与硬盘读写速度差几个数量级,会导致发生交换后的 Redis 性能急剧下降。识别 Redis 内存交换的检查方法如下:
>redis-cli -p 6383 info server | grep process_id # 查询 redis 进程号
>cat /proc/4476/smaps | grep Swap # 查询内存交换大小
Swap: 0 kB
Swap: 4 kB
Swap: 0 kB
Swap: 0 kB
如果交换量都是0KB或者个别的是4KB,则是正常现象,说明Redis进程内存没有被交换。
有很多方法可以避免内存交换的发生。比如说:
- 保证机器充足的可用内存;
- 降低系统使用swap优先级,如echo10>/proc/sys/vm/swappiness;
- 确保所有Redis实例设置最大可用内存(maxmemory),防止极端情况下 Redis 内存不可控的增长。
相关推荐
- 实战派 | Java项目中玩转Redis6.0客户端缓存
-
铺垫首先介绍一下今天要使用到的工具Lettuce,它是一个可伸缩线程安全的redis客户端。多个线程可以共享同一个RedisConnection,利用nio框架Netty来高效地管理多个连接。放眼望向...
- 轻松掌握redis缓存穿透、击穿、雪崩问题解决方案(20230529版)
-
1、缓存穿透所谓缓存穿透就是非法传输了一个在数据库中不存在的条件,导致查询redis和数据库中都没有,并且有大量的请求进来,就会导致对数据库产生压力,解决这一问题的方法如下:1、使用空缓存解决对查询到...
- Redis与本地缓存联手:多级缓存架构的奥秘
-
多级缓存(如Redis+本地缓存)是一种在系统架构中广泛应用的提高系统性能和响应速度的技术手段,它综合利用了不同类型缓存的优势,以下为你详细介绍:基本概念本地缓存:指的是在应用程序所在的服务器内...
- 腾讯云国际站:腾讯云服务器如何配置Redis缓存?
-
本文由【云老大】TG@yunlaoda360撰写一、安装Redis使用包管理器安装(推荐)在CentOS系统中,可以通过yum包管理器安装Redis:sudoyumupdate-...
- Spring Boot3 整合 Redis 实现数据缓存,你做对了吗?
-
你是否在开发互联网大厂后端项目时,遇到过系统响应速度慢的问题?当高并发请求涌入,数据库压力剧增,响应时间拉长,用户体验直线下降。相信不少后端开发同行都被这个问题困扰过。其实,通过在SpringBo...
- 【Redis】Redis应用问题-缓存穿透缓存击穿、缓存雪崩及解决方案
-
在我们使用redis时,也会存在一些问题,导致请求直接打到数据库上,导致数据库挂掉。下面我们来说说这些问题及解决方案。1、缓存穿透1.1场景一个请求进来后,先去redis进行查找,redis存在,则...
- Spring boot 整合Redis缓存你了解多少
-
在前一篇里面讲到了Redis缓存击穿、缓存穿透、缓存雪崩这三者区别,接下来我们讲解Springboot整合Redis中的一些知识点:之前遇到过,有的了四五年,甚至更长时间的后端Java开发,并且...
- 揭秘!Redis 缓存与数据库一致性问题的终极解决方案
-
在现代软件开发中,Redis作为一款高性能的缓存数据库,被广泛应用于提升系统的响应速度和吞吐量。然而,缓存与数据库之间的数据一致性问题,一直是开发者们面临的一大挑战。本文将深入探讨Redis缓存...
- 高并发下Spring Cache缓存穿透?我用Caffeine+Redis破局
-
一、什么是缓存穿透?缓存穿透是指查询一个根本不存在的数据,导致请求直接穿透缓存层到达数据库,可能压垮数据库的现象。在高并发场景下,这尤其危险。典型场景:恶意攻击:故意查询不存在的ID(如负数或超大数值...
- Redis缓存三剑客:穿透、雪崩、击穿—手把手教你解决
-
缓存穿透菜小弟:我先问问什么是缓存穿透?我听说是缓存查不到,直接去查数据库了。表哥:没错。缓存穿透是指查询一个缓存中不存在且数据库中也不存在的数据,导致每次请求都直接访问数据库的行为。这种行为会让缓存...
- Redis中缓存穿透问题与解决方法
-
缓存穿透问题概述在Redis作为缓存使用时,缓存穿透是常见问题。正常查询流程是先从Redis缓存获取数据,若有则直接使用;若没有则去数据库查询,查到后存入缓存。但当请求的数据在缓存和数据库中都...
- Redis客户端缓存的几种实现方式
-
前言:Redis作为当今最流行的内存数据库和缓存系统,被广泛应用于各类应用场景。然而,即使Redis本身性能卓越,在高并发场景下,应用于Redis服务器之间的网络通信仍可能成为性能瓶颈。所以客户端缓存...
- Nginx合集-常用功能指导
-
1)启动、重启以及停止nginx进入sbin目录之后,输入以下命令#启动nginx./nginx#指定配置文件启动nginx./nginx-c/usr/local/nginx/conf/n...
- 腾讯云国际站:腾讯云怎么提升服务器速度?
-
本文由【云老大】TG@yunlaoda360撰写升级服务器规格选择更高性能的CPU、内存和带宽,以提供更好的处理能力和网络性能。优化网络配置调整网络接口卡(NIC)驱动,优化TCP/IP参数...
- 雷霆一击服务器管理员教程
-
本文转载莱卡云游戏服务器雷霆一击管理员教程(搜索莱卡云面版可搜到)首先你需要给服务器设置管理员密码,默认是空的管理员密码在启动页面进行设置设置完成后你需要重启服务器才可生效加入游戏后,点击键盘左上角E...
你 发表评论:
欢迎- 一周热门
-
-
爱折腾的特斯拉车主必看!手把手教你TESLAMATE的备份和恢复
-
如何在安装前及安装后修改黑群晖的Mac地址和Sn系列号
-
[常用工具] OpenCV_contrib库在windows下编译使用指南
-
WindowsServer2022|配置NTP服务器的命令
-
Ubuntu系统Daphne + Nginx + supervisor部署Django项目
-
WIN11 安装配置 linux 子系统 Ubuntu 图形界面 桌面系统
-
解决Linux终端中“-bash: nano: command not found”问题
-
Linux 中的文件描述符是什么?(linux 打开文件表 文件描述符)
-
NBA 2K25虚拟内存不足/爆内存/内存占用100% 一文速解
-
K3s禁用Service Load Balancer,解决获取浏览器IP不正确问题
-
- 最近发表
-
- 实战派 | Java项目中玩转Redis6.0客户端缓存
- 轻松掌握redis缓存穿透、击穿、雪崩问题解决方案(20230529版)
- Redis与本地缓存联手:多级缓存架构的奥秘
- 腾讯云国际站:腾讯云服务器如何配置Redis缓存?
- Spring Boot3 整合 Redis 实现数据缓存,你做对了吗?
- 【Redis】Redis应用问题-缓存穿透缓存击穿、缓存雪崩及解决方案
- Spring boot 整合Redis缓存你了解多少
- 揭秘!Redis 缓存与数据库一致性问题的终极解决方案
- 高并发下Spring Cache缓存穿透?我用Caffeine+Redis破局
- Redis缓存三剑客:穿透、雪崩、击穿—手把手教你解决
- 标签列表
-
- linux 查询端口号 (58)
- docker映射容器目录到宿主机 (66)
- 杀端口 (60)
- yum更换阿里源 (62)
- internet explorer 增强的安全配置已启用 (65)
- linux自动挂载 (56)
- 禁用selinux (55)
- sysv-rc-conf (69)
- ubuntu防火墙状态查看 (64)
- windows server 2022激活密钥 (56)
- 无法与服务器建立安全连接是什么意思 (74)
- 443/80端口被占用怎么解决 (56)
- ping无法访问目标主机怎么解决 (58)
- fdatasync (59)
- 405 not allowed (56)
- 免备案虚拟主机zxhost (55)
- linux根据pid查看进程 (60)
- dhcp工具 (62)
- mysql 1045 (57)
- 宝塔远程工具 (56)
- ssh服务器拒绝了密码 请再试一次 (56)
- ubuntu卸载docker (56)
- linux查看nginx状态 (63)
- tomcat 乱码 (76)
- 2008r2激活序列号 (65)