百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

微软工程师用PyTorch实现图注意力网络,可视化效果惊艳

nanshan 2024-11-05 10:44 11 浏览 0 评论

机器之心报道

作者:陈萍、蛋酱

近日,一个关于图注意力网络可视化的项目吸引了大批研究人员的兴趣,上线仅仅一天,收获 200+ 星。该项目是关于用 PyTorch 实现的图注意力网络(GAT),包括易于理解的可视化。

项目地址:https://github.com/gordicaleksa/pytorch-GAT

在正式介绍项目之前,先提一下图神经网络(GNN)。GNN 是一类基于深度学习的处理图域信息的方法。由于其较好的性能和可解释性,GNN 最近已成为一种广泛应用的图分析方法。现已广泛应用于计算生物学、计算药理学、推荐系统等。

GNN 把深度学习应用到图结构 (Graph) 中,其中的图卷积网络 GCN 可以在 Graph 上进行卷积操作,但是 GCN 存在一些缺陷。因此,Bengio 团队在三年前提出了图注意力网络(GAT,Graph Attention Network),旨在解决 GCN 存在的问题。

GAT 是空间(卷积)GNN 的代表。由于 CNNs 在计算机视觉领域取得了巨大的成功,研究人员决定将其推广到图形上,因此 GAT 应运而生。

现在,有人用 PyTorch 实现了 GAT 可视化。我们来看看该项目是如何实现的。

可视化

Cora 可视化

说到 GNN,就不得不介绍一下 Cora 数据集。Cora 数据集由许多机器学习论文组成,是近年来图深度学习很喜欢使用的数据集。Cora 中的节点代表研究论文,链接是这些论文之间的引用。项目作者添加了一个用于可视化 Cora 和进行基本网络分析的实用程序。Cora 如下图所示:

节点大小对应于其等级(即进出边的数量)。边的粗细大致对应于边的「popular」或「连接」程度。以下是显示 Cora 上等级(进出边的数量)分布的图:

进和出的等级图是一样的,因为处理的是无向图。在底部的图(等级分布)上,我们可以看到一个有趣的峰值发生在 [2,4] 范围内。这意味着多数节点有少量的边,但是有 1 个节点有 169 条边(绿色大节点)。

注意力可视化

有了一个训练好的 GAT 模型以后,我们就可以将某些节点所学的注意力可视化。节点利用注意力来决定如何聚合周围的节点,如下图所示:

这是 Cora 节点中边数最多的节点之一(引用)。颜色表示同一类的节点。

熵直方图

另一种理解 GAT 没有在 Cora 上学习注意力模式 (即它在学习常量注意力) 的方法是,将节点邻域的注意力权重视为概率分布,计算熵,并在每个节点邻域积累信息。

我们希望 GAT 的注意力分布有偏差。你可以看到橙色的直方图是理想均匀分布的样子,而浅蓝色的是学习后的分布,它们是完全一样的。

分析 Cora 嵌入空间 (t-SNE)

GAT 的输出张量为 shape=(2708,7),其中 2708 是 Cora 中的节点数,7 是类数。用 t-SNE 把这些 7 维向量投影成 2D,得到:

使用方法

方法 1:Jupyter Notebook

只需从 Anaconda 控制台运行 Jupyter Notebook,它将在你的默认浏览器中打开 session。打开 The Annotated GAT.ipynb 即可开始。

注意,如果你得到了 DLL load failed while importing win32api: The specified module could not be found,只需要 pip uninstall pywin32,或者 pip install pywin32、onda install pywin32。

方法 2:使用你选择的 IDE

如果使用自己选择的 IDE,只需要将 Python 环境和设置部分连接起来。

训练 GAT

在 Cora 上训练 GAT 所需的一切都已经设置好了,运行时只需调用 python training_script.py

此外,你还可以:

添加 --should_visualize - 以可视化你的图形数据

在数据的测试部分添加 --should_test - 以评估 GAT

添加 --enable_tensorboard - 开始保存度量标准(准确率、损失)

代码部分的注释很完善,因此你可以了解到训练本身是如何运行的。

该脚本将:

将 checkpoint* .pth 模型转储到 models/checkpoints/

将 final* .pth 模型转储到 models/binaries/

将度量标准保存到中 runs/,只需 tensorboard --logdir=runs 在 Anaconda 中运行即可将其可视化

定期将一些训练元数据写入控制台

通过 tensorboard --logdir=runs 在控制台中调用,并将 http://localhost:6006/URL 粘贴到浏览器中,可以在训练过程中将度量标准可视化:

可视化工具

如果要可视化 t-SNE 嵌入,请注意或嵌入该 visualize_gat_properties 函数的注释,并设置 visualization_type 为:

VisualizationType.ATTENTION - 如果希望可视化节点附近的注意力

VisualizationType.EMBEDDING - 如果希望可视化嵌入(通过 t-SNE)

VisualizationType.ENTROPY - 如果想可视化熵直方图

然后,你就得到了一张优秀的可视化效果图(VisualizationType.ATTENTION 可选):

硬件需求

GAT 不需要那种很强的硬件资源,尤其是如果你只想运行 Cora 的话,有 2GB 以上的 GPU 就可以了。

在 RTX 2080 GPU 上训练 GAT 大约需要 10 秒;

保留 1.5 GB 的 VRAM 内存(PyTorch 的缓存开销,为实际张量分配的内存少得多);

模型本身只有 365 KB。

视频链接:https://v.qq.com/x/page/v3225t65a0q.html?start=8

相关推荐

0722-6.2.0-如何在RedHat7.2使用rpm安装CDH(无CM)

文档编写目的在前面的文档中,介绍了在有CM和无CM两种情况下使用rpm方式安装CDH5.10.0,本文档将介绍如何在无CM的情况下使用rpm方式安装CDH6.2.0,与之前安装C5进行对比。环境介绍:...

ARM64 平台基于 openEuler + iSula 环境部署 Kubernetes

为什么要在arm64平台上部署Kubernetes,而且还是鲲鹏920的架构。说来话长。。。此处省略5000字。介绍下系统信息;o架构:鲲鹏920(Kunpeng920)oOS:ope...

生产环境starrocks 3.1存算一体集群部署

集群规划FE:节点主要负责元数据管理、客户端连接管理、查询计划和查询调度。>3节点。BE:节点负责数据存储和SQL执行。>3节点。CN:无存储功能能的BE。环境准备CPU检查JDK...

在CentOS上添加swap虚拟内存并设置优先级

现如今很多云服务器都会自己配置好虚拟内存,当然也有很多没有配置虚拟内存的,虚拟内存可以让我们的低配服务器使用更多的内存,可以减少很多硬件成本,比如我们运行很多服务的时候,内存常常会满,当配置了虚拟内存...

国产深度(deepin)操作系统优化指南

1.升级内核随着deepin版本的更新,会自动升级系统内核,但是我们依旧可以通过命令行手动升级内核,以获取更好的性能和更多的硬件支持。具体操作:-添加PPAs使用以下命令添加PPAs:```...

postgresql-15.4 多节点主从(读写分离)

1、下载软件[root@TX-CN-PostgreSQL01-252software]#wgethttps://ftp.postgresql.org/pub/source/v15.4/postg...

Docker 容器 Java 服务内存与 GC 优化实施方案

一、设置Docker容器内存限制(生产环境建议)1.查看宿主机可用内存bashfree-h#示例输出(假设宿主机剩余16GB可用内存)#Mem:64G...

虚拟内存设置、解决linux内存不够问题

虚拟内存设置(解决linux内存不够情况)背景介绍  Memory指机器物理内存,读写速度低于CPU一个量级,但是高于磁盘不止一个量级。所以,程序和数据如果在内存的话,会有非常快的读写速度。但是,内存...

Elasticsearch性能调优(5):服务器配置选择

在选择elasticsearch服务器时,要尽可能地选择与当前业务量相匹配的服务器。如果服务器配置太低,则意味着需要更多的节点来满足需求,一个集群的节点太多时会增加集群管理的成本。如果服务器配置太高,...

Es如何落地

一、配置准备节点类型CPU内存硬盘网络机器数操作系统data节点16C64G2000G本地SSD所有es同一可用区3(ecs)Centos7master节点2C8G200G云SSD所有es同一可用区...

针对Linux内存管理知识学习总结

现在的服务器大部分都是运行在Linux上面的,所以,作为一个程序员有必要简单地了解一下系统是如何运行的。对于内存部分需要知道:地址映射内存管理的方式缺页异常先来看一些基本的知识,在进程看来,内存分为内...

MySQL进阶之性能优化

概述MySQL的性能优化,包括了服务器硬件优化、操作系统的优化、MySQL数据库配置优化、数据库表设计的优化、SQL语句优化等5个方面的优化。在进行优化之前,需要先掌握性能分析的思路和方法,找出问题,...

Linux Cgroups(Control Groups)原理

LinuxCgroups(ControlGroups)是内核提供的资源分配、限制和监控机制,通过层级化进程分组实现资源的精细化控制。以下从核心原理、操作示例和版本演进三方面详细分析:一、核心原理与...

linux 常用性能优化参数及理解

1.优化内核相关参数配置文件/etc/sysctl.conf配置方法直接将参数添加进文件每条一行.sysctl-a可以查看默认配置sysctl-p执行并检测是否有错误例如设置错了参数:[roo...

如何在 Linux 中使用 Sysctl 命令?

sysctl是一个用于配置和查询Linux内核参数的命令行工具。它通过与/proc/sys虚拟文件系统交互,允许用户在运行时动态修改内核参数。这些参数控制着系统的各种行为,包括网络设置、文件...

取消回复欢迎 发表评论: