百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

ubuntu 22.04 下 Kubernetes管理 4块4090 GPU显卡

nanshan 2024-11-11 12:18 22 浏览 0 评论


1.安装显卡驱动


NVIDIA-Linux-x86_64-535.113.01.run* cuda 12.2


国内下载地址,速度快,替换驱动版本


# wget https://cn.download.nvidia.com/XFree86/Linux-x86_64/525.113.01/NVIDIA-Linux-x86_64-525.113.01.run
# sh NVIDIA-Linux-x86_64-535.113.01.run


安装完reboot 重启


开启内存持久化


(base) ubuntu@ubuntu:~$ nvidia-smi -pm 1
Unable to set persistence mode for GPU 00000000:17:00.0: Insufficient Permissions
Terminating early due to previous errors.


nvidia-smi 查看显卡


(base) ubuntu@ubuntu:~$ nvidia-smi -L
GPU 0: NVIDIA GeForce RTX 4090 (UUID: GPU-88717b49-0372-9d05-e6ca-238870f93bf3)
GPU 1: NVIDIA GeForce RTX 4090 (UUID: GPU-74b01939-bc8b-833b-10ac-daa5c60fc594)
GPU 2: NVIDIA GeForce RTX 4090 (UUID: GPU-0715eb37-44d8-d7ca-cd20-79452c93fe86)
GPU 3: NVIDIA GeForce RTX 4090 (UUID: GPU-b9f5ac04-9684-71fe-88b6-6363e7c2936d)
(base) ubuntu@ubuntu:~$


2.安装docker


配置apt源


# Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl gnupg
sudo install -m 0755 -d /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
sudo chmod a+r /etc/apt/keyrings/docker.gpg
# Add the repository to Apt sources:
echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update


安装docker


sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin


重启docker


systemctl restart docker


3.安装nvidia-docker-toolkit


安装Apt


配置存储库:


#curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \

&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \

sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \

sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list \

&& \

sudo apt-get update


安装NVIDIA容器工具包:


#sudo apt-get install -y nvidia-container-toolkit


测试安装


#docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi


4.安装kubernetes kubeadm


由于服务器上已经安装了docker ,所有我们不用containerd


基础环境配置


1.设置主机名字,具有明显的标识性


hostnamectl set-hostname ubuntu


2.禁用SELinux


sudo setenforce 0

sudo sed -i 's/^SELINUX=enforcing$/SELINUX=permissive/' /etc/selinux/config


3.关闭swap分区


swapoff -a #临时关闭

sed -ri 's/.*swap.*/#&/' /etc/fstab #永久关闭

sed -ri 's/#(.*swap.*)/\1/' /etc/fstab #开启swap分区


4.把IPv6的流量桥接到IPv4网卡上,通信更方便,统计更准确


cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf

br_netfilter

EOF

cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf

net.bridge.bridge-nf-call-ip6tables = 1

net.bridge.bridge-nf-call-iptables = 1

EOF


5.应用配置


sysctl --system


6. 安装Kubernetes组件


0.docker 已经安装好,不再安装 ,查看docker的版本和配置信息


(base) ubuntu@ubuntu:~/k8s$ sudo docker info

Client: Docker Engine - Community

Version: 24.0.6

Context: default

Debug Mode: false

Plugins:

buildx: Docker Buildx (Docker Inc.)

Version: v0.11.2

Path: /usr/libexec/docker/cli-plugins/docker-buildx

compose: Docker Compose (Docker Inc.)

Version: v2.21.0

Path: /usr/libexec/docker/cli-plugins/docker-compose

(base) ubuntu@ubuntu:~/k8s$


(base) ubuntu@ubuntu:~/k8s$ cat /etc/docker/daemon.json

{

"exec-opts":["native.cgroupdriver=systemd"],

"data-root": "/data2/dockerdata",

"runtimes": {

"nvidia": {

"args": [],

"path": "nvidia-container-runtime"

}

}

}

(base) ubuntu@ubuntu:~/k8s$


1.Kubernetes 添加 apt 存储库


curl https://mirrors.aliyun.com/kubernetes/apt/doc/apt-key.gpg | apt-key add -

sudo apt-add-repository "deb kubernetes-apt安装包下载_开源镜像站-阿里云 kubernetes-xenial main"


2.安装kubelet,kubectl,kubeadm


sudo apt update

sudo apt install -y kubelet=1.23.8-00 kubeadm=1.23.8-00 kubectl=1.23.8-00

sudo apt-mark hold kubelet kubeadm kubectl


这里指定了版本是为了将其版本保持一致,以便于后面安装dashboard,由于是用docker安装k8s,而在k8s v1.24之后的版本不再支持docker,所以安装v1.23.8,如果想安装最新版本或者指定版本,把后面的版本号去掉或者修改即可


最后一行命令是为了防止其自动更新导致版本不匹配


#解除锁定

apt-mark unhold package_name


3.设置kubelet开机自启


sudo systemctl enable --now kubelet


4.master域名映射


echo "172.16.1.220 cluster-endpoint" >> /etc/hosts # 把x替换成你的服务器/虚拟机的内网ip


5.kubeadm init初始化


sudo kubeadm init \

--apiserver-advertise-address=172.16.1.220 \

--control-plane-endpoint=cluster-endpoint \

--image-repository registry.aliyuncs.com/google_containers \

--kubernetes-version v1.23.8 \

--service-cidr=10.96.0.0/16 \

--pod-network-cidr=10.244.0.0/16


在使用docker安装k8s的时候,有一个很重要的小细节,就是docker默认使用的Cgroup Driver是cgroupfs,安装报错,那么就需要使用systemd作为cgroup


解决方法:


vim /etc/docker/daemon.json


添加以下内容


{

"exec-opts":["native.cgroupdriver=systemd"]

}


#应用配置并重启docker


systemctl daemon-reload

systemctl restart docker


此时,重新使用kubeadm初始化就没问题了


在初始化之前还要重置以前的初始化


kubeadm reset

rm -rf /etc/kubernetes/manifests/kube-apiserver.yaml

rm -rf /etc/kubernetes/manifests/kube-controller-manager.yaml

rm -rf /etc/kubernetes/manifests/kube-scheduler.yaml

rm -rf /etc/kubernetes/manifests/etcd.yaml

rm -rf /var/lib/etcd/*


(base) ubuntu@ubuntu:~$ sudo systemctl status kubelet

● kubelet.service - kubelet: The Kubernetes Node Agent

Loaded: loaded (/lib/systemd/system/kubelet.service; enabled; vendor preset: enabled)

Drop-In: /etc/systemd/system/kubelet.service.d

└─10-kubeadm.conf

Active: active (running) since Wed 2024-04-03 07:40:35 UTC; 2min 54s ago

Docs: Kubernetes Documentation | Kubernetes

Main PID: 90566 (kubelet)

Tasks: 47 (limit: 618620)

Memory: 98.3M

CGroup: /system.slice/kubelet.service

└─90566 /usr/bin/kubelet --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --kubeconfig=/etc/kubernetes/kubelet.conf --config=>

(base) ubuntu@ubuntu:~$ sudo docker images |grep google

registry.aliyuncs.com/google_containers/kube-apiserver v1.23.8 09d62ad3189b 21 months ago 135MB

registry.aliyuncs.com/google_containers/kube-proxy v1.23.8 db4da8720bcb 21 months ago 112MB

registry.aliyuncs.com/google_containers/kube-scheduler v1.23.8 afd180ec7435 21 months ago 53.5MB

registry.aliyuncs.com/google_containers/kube-controller-manager v1.23.8 2b7c5a039984 21 months ago 125MB

registry.aliyuncs.com/google_containers/etcd 3.5.1-0 25f8c7f3da61 2 years ago 293MB

registry.aliyuncs.com/google_containers/coredns v1.8.6 a4ca41631cc7 2 years ago 46.8MB

registry.aliyuncs.com/google_containers/pause 3.6 6270bb605e12 2 years ago 683kB

(base) ubuntu@ubuntu:~$


令牌是节点加入的指令,24h有效,可以用以下指令生成


kubeadm token create --print-join-command


6.根据提示继续 ----以 ubuntu 用户执行


mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config


7.安装网络组件


curl https://docs.projectcalico.org/v3.20/manifests/calico.yaml -O


接着将calico.yaml中的3888和3889行修改为如图所示的样子,因为前面node节点的ip配置是这样的


vi calico.yaml

3888 # - name: CALICO_IPV4POOL_CIDR

3889 # value: "192.168.0.0/16"

----》

3888 - name: CALICO_IPV4POOL_CIDR

3889 value: "10.244.0.0/16"


应用yaml文件


(base) ubuntu@ubuntu:~/k8s$ kubectl apply -f calico.yaml

(base) ubuntu@ubuntu:~/k8s$


8.查看master节点状态


kubectl get nodes ------等一会才能查看到状态 网络配置完成过一会即可看到Ready状态


(base) ubuntu@ubuntu:~/k8s$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

ubuntu Ready control-plane,master 14m v1.23.8


至此,k8s集群搭建完毕,如有多个node节点可以使用令牌加入master节点中


(base) ubuntu@ubuntu:~/k8s$ kubectl get no -o yaml | grep taint -A 5

taints:

- effect: NoSchedule

key: node-role.kubernetes.io/master

status:

addresses:

- address: 172.16.1.220

(base) ubuntu@ubuntu:~/k8s$


#去除所有的污点


(base) ubuntu@ubuntu:~/k8s$ kubectl taint nodes --all node-role.kubernetes.io/master-

node/ubuntu untainted


#再次查看,如果没有任何输出则污点去除成功


(base) ubuntu@ubuntu:~/k8s$ kubectl get no -o yaml | grep taint -A 5

(base) ubuntu@ubuntu:~/k8s$


#查看pod节点是否成功启动,所有节点都是running


(base) ubuntu@ubuntu:~/k8s$ kubectl get pods --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE

kube-system calico-kube-controllers-5b9cd88b65-gtjvn 1/1 Running 0 10m

kube-system calico-node-nc746 1/1 Running 0 10m

kube-system coredns-6d8c4cb4d-85t62 1/1 Running 0 24m

kube-system coredns-6d8c4cb4d-cwd92 1/1 Running 0 24m

kube-system etcd-ubuntu 1/1 Running 1 24m

kube-system kube-apiserver-ubuntu 1/1 Running 1 24m

kube-system kube-controller-manager-ubuntu 1/1 Running 1 24m

kube-system kube-proxy-st4qb 1/1 Running 0 24m

kube-system kube-scheduler-ubuntu 1/1 Running 1 24m

(base) ubuntu@ubuntu:~/k8s$


默认安装 kubeadm 证书有效期 一年


(base) ubuntu@ubuntu:~$ sudo kubeadm certs check-expiration

[check-expiration] Reading configuration from the cluster...

[check-expiration] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'

W0403 14:24:19.986291 791926 utils.go:69] The recommended value for "resolvConf" in "KubeletConfiguration" is: /run/systemd/resolve/resolv.conf; the provided value is: /run/systemd/resolve/resolv.conf


5.安装设备插件 device plugin


部署设备插件的首选方法是使用helm作为守护进程。 安装helm的说明可以在 这里.


https://github.com/helm/helm/tags


下载helm二进制包


#tar -zxvf helm-v3.10.2-linux-amd64.tar.gz

#mv linux-amd64/helm /usr/local/bin/helm


开始,设置插件的helm存储库,并更新如下:


$ helm repo add nvdp https://nvidia.github.io/k8s-device-plugin

$ helm repo update


然后验证插件的最新版本(v0.14.3)是否可用:


(base) ubuntu@ubuntu:~/k8s$ helm search repo nvdp --devel

NAME CHART VERSION APP VERSION DESCRIPTION

nvdp/gpu-feature-discovery 0.15.0-rc.2 0.15.0-rc.2 A Helm chart for gpu-feature-discovery on Kuber...

nvdp/nvidia-device-plugin 0.15.0-rc.2 0.15.0-rc.2 A Helm chart for the nvidia-device-plugin on Ku...

(base) ubuntu@ubuntu:~/k8s$


Deploy the device plugin:


#helm install --generate-name nvdp/nvidia-device-plugin --namespace nvidia-device-plugin \

--create-namespace


下载helm chat 包


helm pull nvdp/nvidia-device-plugin


安装nvidia-device-plugin插件一直起不来,查看日志发现抱错


(base) ubuntu@ubuntu:~$ kubectl logs nvidia-device-plugin-1712138777-wxdc8 -n nvidia-device-plugin


安装抱错 Detected non-NVML platform: could not load NVML library: libnvidia-ml.so.1: cannot open shared object file: No such file or directory


需要修改 daemon.json 文件 ,然后重启docker


(base) ubuntu@ubuntu:~$ more /etc/docker/daemon.json

{

"exec-opts":["native.cgroupdriver=systemd"],

"data-root": "/data2/dockerdata",

"default-runtime": "nvidia",

"runtimes": {

"nvidia": {

"runtimeArgs": [],

"path": "/usr/bin/nvidia-container-runtime"

}

}

}

(base) ubuntu@ubuntu:~$ sudo systemctl restart docker


6.安装gpu-feature-discovery


$ helm repo add nvgfd https://nvidia.github.io/gpu-feature-discovery

$ helm repo update

$ helm search repo nvgfd --devel

# helm install --generate-name nvgfd/gpu-feature-discovery --namespace gpu-feature-discovery \

--create-namespace

(base) ubuntu@ubuntu:~$ helm list -A

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

gpu-feature-discovery-1712148385 gpu-feature-discovery 1 2024-04-03 12:47:56.759025068 +0000 UTC deployed gpu-feature-discovery-0.8.2 0.8.2

nvidia-device-plugin-1712138777 nvidia-device-plugin 1 2024-04-03 10:08:01.06389181 +0000 UTC deployed nvidia-device-plugin-0.14.5 0.14.5

(base) ubuntu@ubuntu:~$


镜像下载不下来 ,下载helm chart 重新安装


(base) ubuntu@ubuntu:~/k8s/gpu-feature-discovery$ helm uninstall gpu-feature-discovery-1712148385 -n gpu-feature-discovery

release "gpu-feature-discovery-1712148385" uninstalled

(base) ubuntu@ubuntu:~/k8s/gpu-feature-discovery$


#helm pull nvgfd/gpu-feature-discovery

#docker pull yansenchangyu/node-feature-discovery:v0.13.1

#docker pull nvcr.io/nvidia/gpu-feature-discovery:v0.8.2


修改 node-feature-discovery 下载路径,原来的镜像下载不下来 修改 registry.k8s.io/nfd/node-feature-discovery:v0.13.2 --》yansenchangyu/node-feature-discovery:v0.13.1


#helm install gpu-feature-discovery . --create-namespace --namespace gpu-feature-discovery


Helm 安装gpu-feature-discovery ,NFD 会自动安装


7.测试集群和GPU集成


cat <<EOF | kubectl apply -f -

apiVersion: v1
kind: Pod
metadata:
name: gpu-pod
spec:
restartPolicy: Never
containers:
- name: cuda-container
image: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda10.2
resources:
limits:
nvidia.com/gpu: 1 # requesting 1 GPU
nodeSelector:
accelerator: nvidia-rtx4090

EOF


观察运行日志,看到 Test PASSED 表示容器使用gpu计算运行完成。


(base) ubuntu@ubuntu:~/k8s$ kubectl logs gpu-pod

[Vector addition of 50000 elements]

Copy input data from the host memory to the CUDA device

CUDA kernel launch with 196 blocks of 256 threads

Copy output data from the CUDA device to the host memory

Test PASSED

Done

(base) ubuntu@ubuntu:~/k8s$


如果你觉得内容还算实用,欢迎点赞分享给你的朋友,在此谢过。

相关推荐

如何为MySQL服务器和客户机启用SSL?

用户想要与MySQL服务器建立一条安全连接时,常常依赖VPN隧道或SSH隧道。不过,获得MySQL连接的另一个办法是,启用MySQL服务器上的SSL封装器(SSLwrapper)。这每一种方法各有其...

Mysql5.7 出现大量 unauthenticated user

线上环境mysql5.7突然出现大量unauthenticateduser,进mysql,showprocesslist;解决办法有:在/etc/hosts中添加客户端ip,如192.16...

MySQL 在 Windows 系统下的安装(mysql安装教程windows)

更多技术文章MySQL在Windows系统下的安装1.下载mysql和Framework链接链接:百度网盘请输入提取码提取码:6w3p双击mysql-installer-communit...

MySql5.7.21.zip绿色版安装(mysql数据库绿色版安装)

1、去网上下载满足系统要求的版本(mysql-5.7.21-winx64.zip)2、直接解压3、mysql的初始化(1)以管理员身份运行cmd,在mysql中的bin目录下shift+右键-在...

MySQL(8.0)中文全文检索 (亲测有效)

在一堆文字中找到含有关键字的应用。当然也可以用以下语句实现:SELECT*FROM<表名>WHERE<字段名>like‘%ABC%’但是它的效率太低,是全盘扫描。...

新手教程,Linux系统下MySQL的安装

看了两三个教程。终于在哔哩哔哩找到一个简单高效的教程,成功安装,up主名叫bili逍遥bili,感兴趣可以去看看。下面这个是我总结的安装方法环境:CentOS764位1.下载安装包,个人觉得在...

麒麟服务器操作系统安装 MySQL 8 实战指南

原文连接:「链接」Hello,大家好啊,今天给大家带来一篇麒麟服务器操作系统上安装MySQL8的文章,欢迎大家分享点赞,点个在看和关注吧!MySQL作为主流开源数据库之一,被广泛应用于各种业务...

用Python玩转MySQL的全攻略,从环境搭建到项目实战全解析

这是一篇关于“MySQL数据库入门实战-Python版”的教程,结合了案例实战分析,帮助初学者快速掌握如何使用Python操作MySQL数据库。一、环境准备1.安装Python访问Pytho...

安装MySQL(中标麒麟 安装mysql)

安装MySQL注意:一定要用root用户操作如下步骤;先卸载MySQL再安装1.安装包准备(1)查看MySQL是否安装rpm-qa|grepmysql(2)如果安装了MySQL,就先卸载rpm-...

Mysql最全笔记,快速入门,干货满满,爆肝

目录一、MySQL的重要性二、MySQL介绍三、软件的服务架构四、MySQL的安装五、SQL语句六、数据库相关(DDL)七、表相关八、DML相关(表中数据)九、DQL(重点)十、数据完...

MAC电脑安装MySQL操作步骤(mac安装mysqldb)

1、在官网下载MySQL:https://dev.mysql.com/downloads/mysql/根据自己的macOS版本,选择适配的MySQL版本根据自己需求选择相应的安装包,我这里选择macO...

mysql主从(mysql主从切换)

1、本章面试题什么是mysql主从,主从有什么好处什么是读写分离,有什么好处,使用mycat如何实现2、知识点2.1、课程回顾dubboORM->MVC->RPC->SOApro...

【linux学习】以MySQL为例,带你了解数据库

做运维的小伙伴在日常工作中难免需要接触到数据库,不管是MySQL,mariadb,达梦还是瀚高等其实命令都差不多,下面我就以MySQL为例带大家一起来了解下数据库。有兴趣的小伙伴不妨评论区一起交流下...

玩玩WordPress - 环境简介(0)(玩玩网络科技有限公司)

简介提到开源博客系统,一般都会直接想到WordPress!WordPress是使用PHP开发的,数据库使用的是MySQL,一般会在Linux上运行,Nginx作为前端。这时候就需要有一套LNMP(Li...

服务器常用端口都有哪些?(服务器端使用的端口号范围)

下面为大家介绍一下,服务器常用的一些默认端口,以及他们的作用:  21:FTP服务所开放的端口,用于上传、下载文件。  22:SSH端口,用于通过命令行模式远程连接Linux服务器或vps。  23:...

取消回复欢迎 发表评论: