大数据每周分享第 3 期(大数据每周分享第 3 期内容)
nanshan 2024-11-17 00:16 8 浏览 0 评论
这里记录过去一周,大数据相关值得分享的东西,每周日发布。
欢迎投稿,或推荐你自己的项目,请前往 GitHub 的 aikuyun/bt_weekly 提交 issue。
今天尝试写第三期,记录过去一周一点所见所闻。上周好像忘记发了?是的...
技术一瞥
1、Kafka 的分区数?数据发送为什么要带上 key?
在回答第一个问题之前,先来看一段 kafka 的简单描述:
① Kafka官网上标榜自己是"high-throughput distributed messaging system",即一个高吞吐量的分布式消息引擎。那么怎么达到高吞吐量呢?Kafka在底层摒弃了Java堆缓存机制,采用了操作系统级别的页缓存,同时将随机写操作改为顺序写,再结合Zero-Copy的特性极大地改善了IO性能。但是,这只是一个方面,毕竟单机优化的能力是有上限的。如何通过水平扩展甚至是线性扩展来进一步提升吞吐量呢? Kafka就是使用了分区(partition),通过将topic的消息打散到多个分区并分布保存在不同的broker上实现了消息处理(不管是producer还是consumer)的高吞吐量。
② Kafka的生产者和消费者都可以多线程地并行操作,而每个线程处理的是一个分区的数据。因此分区实际上是调优Kafka并行度的最小单元。对于producer而言,它实际上是用多个线程并发地向不同分区所在的broker发起Socket连接同时给这些分区发送消息;而consumer呢,同一个消费组内的所有consumer线程都被指定topic的某一个分区进行消费(具体如何确定consumer线程数目我们后面会详细说明)。所以说,如果一个topic分区越多,理论上整个集群所能达到的吞吐量就越大。
但分区是否越多越好呢?显然也不是,因为每个分区都有自己的开销:
一是客户端、服务端需要的内存会变多(需要维护一些分区的信息,如果分区越多,这些信息所占的内存就越大)
二是文件句柄的开销(每个分区在底层文件系统都有属于自己的一个目录。该目录下通常会有两个文件: base_offset.log和base_offset.index。Kafak的controller和ReplicaManager会为每个broker都保存这两个文件句柄(file handler)。很明显,如果分区数越多,所需要保持打开状态的文件句柄数也就越多,最终可能会突破你的ulimit -n的限制。)
三是降低了高可用 (如果你有10000个分区,10个broker,也就是说平均每个broker上有1000个分区。此时这个broker挂掉了,那么zookeeper和controller需要立即对这1000个分区进行leader选举。比起很少的分区leader选举而言,这必然要花更长的时间,并且通常不是线性累加的。如果这个broker还同时是controller情况就更糟了)。
默认情况下,Kafka根据传递消息的key来进行分区的分配,即hash(key) % numPartitions,如下图所示:
def partition(key: Any, numPartitions: Int): Int = { Utils.abs(key.hashCode) % numPartitions }
这就保证了相同key的消息一定会被路由到相同的分区。如果你没有指定key,那么Kafka是如何确定这条消息去往哪个分区的呢?
if(key == null) { // 如果没有指定key val id = sendPartitionPerTopicCache.get(topic) // 先看看Kafka有没有缓存的现成的分区Id id match { case Some(partitionId) => partitionId // 如果有的话直接使用这个分区Id就好了 case None => // 如果没有的话, val availablePartitions = topicPartitionList.filter(_.leaderBrokerIdOpt.isDefined) //找出所有可用分区的leader所在的broker if (availablePartitions.isEmpty) throw new LeaderNotAvailableException("No leader for any partition in topic " + topic) val index = Utils.abs(Random.nextInt) % availablePartitions.size // 从中随机挑一个 val partitionId = availablePartitions(index).partitionId sendPartitionPerTopicCache.put(topic, partitionId) // 更新缓存以备下一次直接使用 partitionId } }
2、开发 Spark 流式程序,少不了写 scala 代码,其语法相当简介,如果不写注释一定会挨骂的!
官网Scala 文档
官网Spark 文档
编写一个流式的工具类:
Spark 相关:
protected val sparkConf = new SparkConf protected var ssc: StreamingContext = _ protected var sc: SparkContext = _ protected var fs: FileSystem = _ protected var spark: SparkSession = _
设置 Spark 的一系列参数:
// 设置任务名称 def setJobName(name: String): SparkConf = { sparkConf.setAppName(name) } // 设置任务参数 def set(key: String, value: String): SparkConf = { sparkConf.set(key, value) }
初始化任务:
// 初始化 spark = SparkSession.builder().config(sparkConf).getOrCreate() sc = spark.sparkContext ssc = new StreamingContext(spark.sparkContext, Seconds(sec)) fs = FileSystem.get(ssc.sparkContext.hadoopConfiguration)
Zookeeper 相关:
// 获取配置文件的 zk 服务地址信息 protected val zkHosts: String = PropertiesUtils.get("zookeeper.hosts") // zookeeper 客户端 protected lazy val zkClient = new ZkClient(zkHosts)
实例化 stream:
/** * 实例化一个Stream * @param kafkaParams 参数 * @param offsets 消费位移 * @param topicArr 主题数组 * @return */ protected def getStream(kafkaParams: Map[String, Object],offsets: Map[TopicPartition, Long], topicArr: Array[String]): InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](ssc, PreferConsistent, // 1-首次启动;2-其他次启动 if (offsets.nonEmpty) Subscribe[String, String](topicArr, kafkaParams, offsets) else Subscribe[String, String](topicArr, kafkaParams))
读取、保存 offset 到 zk 的一个目录
/** * 读取zookeeper中保存的kafka主题消费位移,partition1:offset1,...,partitionN:offsetN * Zookeeper保存Kafka数据消费位移,路径格式:/kafka/offsets/groupId/topic,数据格式:partitionId1:offset1,partitionId2:offset2,partitionId3:offset3 * * @param zkClient zookeeper客户端 * @param zkPath zookeeper保存路径 * @param topic kafka主题 * @return */ protected def readOffsetsTopic(zkClient: ZkClient, zkPath: String, topic: String): Map[TopicPartition, Long] = { val (offsetsRangesStrOpt, _) = ZkUtils.readDataMaybeNull(zkClient, zkPath + s"/$topic") offsetsRangesStrOpt match { case Some(offsetsRangesStr) => offsetsRangesStr.split(',') .map(s => s.split(':')) .map(p => new TopicPartition(topic, p(0).toInt) -> p(1).toLong) .toMap case None => Map[TopicPartition, Long]() } } /** * 保存kafka主题消费位移到zookeeper中,partition1:offset1,...,partitionN:offsetN * Zookeeper保存Kafka数据消费位移,路径格式:/kafka/offsets/groupId/topic,数据格式:partitionId1:offset1,partitionId2:offset2,partitionId3:offset3 * * @param zkClient zookeeper客户端 * @param zkPath zookeeper保存路径 * @param topic kafka主题 * @param rdd 待保存位置的RDD */ protected def saveOffsetsTopic(zkClient: ZkClient, zkPath: String, topic: String, rdd: RDD[_]): Unit = ZkUtils.updatePersistentPath(zkClient, zkPath + s"/$topic", rdd.asInstanceOf[HasOffsetRanges].offsetRanges .map(offsetRange => s"${offsetRange.partition}:${offsetRange.untilOffset}") .mkString(","))
Scala 下划线主要用法:
第一点,一个类型数据的默认值,譬如var i: Int = _,这里是0。整形为0,浮点为0.0,引用类型为null。
第二点,匿名函数的参数,一个匿名函数里第一个下划线代表第一个参数,第二个代表第二个参数第三点,import的通配符第四点,重命名import时隐藏某个名称时的用法
第五点,模式匹配中代表会被丢弃的值
图片
1、原则
2、房贷
原话是:
第一,30年等额本息,就是最优解。第二,能贷多久贷多久,不能提前还。第三,房贷不可怕,5年以后云淡风清。
3、周末
真相是: 一边是 LOL, 一边是拖更的文章。
文章
1、Redis进阶实践之Redis和Lua初步整合使用
lua这个脚本是一个好东西,可以运行在任何平台上,也可以嵌入到大多数语言当中,来扩展其功能。lua脚本是用C语言写的,体积很小,运行速度很快,并且每次的执行都是作为一个原子事务来执行的,我们可以在其中做很多的事情。
2、大家所推崇的Redis分布式锁真的就万无一失吗?
在单实例JVM中,常见的处理并发问题的方法有很多,比如synchronized关键字进行访问控制、volatile关键字、ReentrantLock等常用方法。但是在分布式环境中,上述方法却不能在跨JVM场景中用于处理并发问题,当业务场景需要对分布式环境中的并发问题进行处理时,需要使用分布式锁来实现。
资源
1、GitHub大数据/数据挖掘/推荐系统/机器学习相关资源
以数据挖掘、机器学习为主。
2、官网lua 官方文档
它好的哪?
Redis在2.6推出了脚本功能,允许开发者使用Lua语言编写脚本传到Redis中执行。使用脚本的好处如下:
- 减少网络开销:本来5次网络请求的操作,可以用一个请求完成,原先5次请求的逻辑放在redis服务器上完成。使用脚本,减少了网络往返时延。
- 原子操作:Redis会将整个脚本作为一个整体执行,中间不会被其他命令插入。
- 复用:客户端发送的脚本会永久存储在Redis中,意味着其他客户端可以复用这一脚本而不需要使用代码完成同样的逻辑。
附上一个开源的 lua 脚本调试工具:开源ZeroBrane Studio is a lightweight Lua IDE
视频
1、【z说球鞋】看懂球鞋经济学
本期视频35分钟,球鞋经济学内容, 不到一节课时间, 你将收获课堂上从没讲过的重要知识点。 点击量可能很惨,但这不重要, 说给有心人,越早听到,对你的人生也许越有帮助。
此处为视频,点击链接查看:https://www.bilibili.com/video/av36948735
订阅
本专栏也会定期同步到公众号和知识星球,欢迎订阅。直接扫码或者微信搜索 cuteximi
(完)
相关推荐
- 实战派 | Java项目中玩转Redis6.0客户端缓存
-
铺垫首先介绍一下今天要使用到的工具Lettuce,它是一个可伸缩线程安全的redis客户端。多个线程可以共享同一个RedisConnection,利用nio框架Netty来高效地管理多个连接。放眼望向...
- 轻松掌握redis缓存穿透、击穿、雪崩问题解决方案(20230529版)
-
1、缓存穿透所谓缓存穿透就是非法传输了一个在数据库中不存在的条件,导致查询redis和数据库中都没有,并且有大量的请求进来,就会导致对数据库产生压力,解决这一问题的方法如下:1、使用空缓存解决对查询到...
- Redis与本地缓存联手:多级缓存架构的奥秘
-
多级缓存(如Redis+本地缓存)是一种在系统架构中广泛应用的提高系统性能和响应速度的技术手段,它综合利用了不同类型缓存的优势,以下为你详细介绍:基本概念本地缓存:指的是在应用程序所在的服务器内...
- 腾讯云国际站:腾讯云服务器如何配置Redis缓存?
-
本文由【云老大】TG@yunlaoda360撰写一、安装Redis使用包管理器安装(推荐)在CentOS系统中,可以通过yum包管理器安装Redis:sudoyumupdate-...
- Spring Boot3 整合 Redis 实现数据缓存,你做对了吗?
-
你是否在开发互联网大厂后端项目时,遇到过系统响应速度慢的问题?当高并发请求涌入,数据库压力剧增,响应时间拉长,用户体验直线下降。相信不少后端开发同行都被这个问题困扰过。其实,通过在SpringBo...
- 【Redis】Redis应用问题-缓存穿透缓存击穿、缓存雪崩及解决方案
-
在我们使用redis时,也会存在一些问题,导致请求直接打到数据库上,导致数据库挂掉。下面我们来说说这些问题及解决方案。1、缓存穿透1.1场景一个请求进来后,先去redis进行查找,redis存在,则...
- Spring boot 整合Redis缓存你了解多少
-
在前一篇里面讲到了Redis缓存击穿、缓存穿透、缓存雪崩这三者区别,接下来我们讲解Springboot整合Redis中的一些知识点:之前遇到过,有的了四五年,甚至更长时间的后端Java开发,并且...
- 揭秘!Redis 缓存与数据库一致性问题的终极解决方案
-
在现代软件开发中,Redis作为一款高性能的缓存数据库,被广泛应用于提升系统的响应速度和吞吐量。然而,缓存与数据库之间的数据一致性问题,一直是开发者们面临的一大挑战。本文将深入探讨Redis缓存...
- 高并发下Spring Cache缓存穿透?我用Caffeine+Redis破局
-
一、什么是缓存穿透?缓存穿透是指查询一个根本不存在的数据,导致请求直接穿透缓存层到达数据库,可能压垮数据库的现象。在高并发场景下,这尤其危险。典型场景:恶意攻击:故意查询不存在的ID(如负数或超大数值...
- Redis缓存三剑客:穿透、雪崩、击穿—手把手教你解决
-
缓存穿透菜小弟:我先问问什么是缓存穿透?我听说是缓存查不到,直接去查数据库了。表哥:没错。缓存穿透是指查询一个缓存中不存在且数据库中也不存在的数据,导致每次请求都直接访问数据库的行为。这种行为会让缓存...
- Redis中缓存穿透问题与解决方法
-
缓存穿透问题概述在Redis作为缓存使用时,缓存穿透是常见问题。正常查询流程是先从Redis缓存获取数据,若有则直接使用;若没有则去数据库查询,查到后存入缓存。但当请求的数据在缓存和数据库中都...
- Redis客户端缓存的几种实现方式
-
前言:Redis作为当今最流行的内存数据库和缓存系统,被广泛应用于各类应用场景。然而,即使Redis本身性能卓越,在高并发场景下,应用于Redis服务器之间的网络通信仍可能成为性能瓶颈。所以客户端缓存...
- Nginx合集-常用功能指导
-
1)启动、重启以及停止nginx进入sbin目录之后,输入以下命令#启动nginx./nginx#指定配置文件启动nginx./nginx-c/usr/local/nginx/conf/n...
- 腾讯云国际站:腾讯云怎么提升服务器速度?
-
本文由【云老大】TG@yunlaoda360撰写升级服务器规格选择更高性能的CPU、内存和带宽,以提供更好的处理能力和网络性能。优化网络配置调整网络接口卡(NIC)驱动,优化TCP/IP参数...
- 雷霆一击服务器管理员教程
-
本文转载莱卡云游戏服务器雷霆一击管理员教程(搜索莱卡云面版可搜到)首先你需要给服务器设置管理员密码,默认是空的管理员密码在启动页面进行设置设置完成后你需要重启服务器才可生效加入游戏后,点击键盘左上角E...
你 发表评论:
欢迎- 一周热门
-
-
爱折腾的特斯拉车主必看!手把手教你TESLAMATE的备份和恢复
-
如何在安装前及安装后修改黑群晖的Mac地址和Sn系列号
-
[常用工具] OpenCV_contrib库在windows下编译使用指南
-
WindowsServer2022|配置NTP服务器的命令
-
Ubuntu系统Daphne + Nginx + supervisor部署Django项目
-
WIN11 安装配置 linux 子系统 Ubuntu 图形界面 桌面系统
-
解决Linux终端中“-bash: nano: command not found”问题
-
Linux 中的文件描述符是什么?(linux 打开文件表 文件描述符)
-
NBA 2K25虚拟内存不足/爆内存/内存占用100% 一文速解
-
K3s禁用Service Load Balancer,解决获取浏览器IP不正确问题
-
- 最近发表
-
- 实战派 | Java项目中玩转Redis6.0客户端缓存
- 轻松掌握redis缓存穿透、击穿、雪崩问题解决方案(20230529版)
- Redis与本地缓存联手:多级缓存架构的奥秘
- 腾讯云国际站:腾讯云服务器如何配置Redis缓存?
- Spring Boot3 整合 Redis 实现数据缓存,你做对了吗?
- 【Redis】Redis应用问题-缓存穿透缓存击穿、缓存雪崩及解决方案
- Spring boot 整合Redis缓存你了解多少
- 揭秘!Redis 缓存与数据库一致性问题的终极解决方案
- 高并发下Spring Cache缓存穿透?我用Caffeine+Redis破局
- Redis缓存三剑客:穿透、雪崩、击穿—手把手教你解决
- 标签列表
-
- linux 查询端口号 (58)
- docker映射容器目录到宿主机 (66)
- 杀端口 (60)
- yum更换阿里源 (62)
- internet explorer 增强的安全配置已启用 (65)
- linux自动挂载 (56)
- 禁用selinux (55)
- sysv-rc-conf (69)
- ubuntu防火墙状态查看 (64)
- windows server 2022激活密钥 (56)
- 无法与服务器建立安全连接是什么意思 (74)
- 443/80端口被占用怎么解决 (56)
- ping无法访问目标主机怎么解决 (58)
- fdatasync (59)
- 405 not allowed (56)
- 免备案虚拟主机zxhost (55)
- linux根据pid查看进程 (60)
- dhcp工具 (62)
- mysql 1045 (57)
- 宝塔远程工具 (56)
- ssh服务器拒绝了密码 请再试一次 (56)
- ubuntu卸载docker (56)
- linux查看nginx状态 (63)
- tomcat 乱码 (76)
- 2008r2激活序列号 (65)